Communications to the Editor

STUDIES ON THE IONOPHOROUS ANTIBIOTICS XXVIII¹⁾. MOYUKAMYCIN, A NEW GLYCOSYLATED POLYETHER ANTIBIOTIC

Sir:

The polyether antibiotics are microbial metabolites produced mainly by *Streptomyces*²⁾ and effective against coccidia³⁾. They have the characteristic physico-chemical property known as ion transport across biological and artificial membranes⁴⁾. Some of them are being widely used as coccidiostats in poultry and as growth promotors in ruminants³⁾.

In the course of our continuous screening program for polyether antibiotics, a new compound moyukamycin sodium salt (I) was found to be produced by *Streptomyces hygroscopicus* TM-581 (FERM-BP 274). This communication describes the isolation, structural elucidation and antimicrobial activity of I.

Fermentation was carried out at 30°C for 4 days in two 5-liter jar fermentors each containing 3 liters of a medium consisting of glucose

2%, oatmeal 2%, meat extract 0.3%, NaCl 0.3%, CaCO₃ 0.3%, FeSO₄·7H₂O 0.04%, and $MnCl_2 \cdot 4H_2O \quad 0.04\%$ (pH 7.0). After the mycelia were removed by centrifugation, the supernatant was extracted with benzene. The mycelia were extracted with acetone and the solvent was removed by evaporation in vacuo to give a concentrated aqueous solution, which was then extracted with benzene. The combined benzene extract was concentrated in vacuo to dryness and the syrupy residue was applied to a Sephadex LH-20 column which was developed with acetone. Fractions active against Bacillus subtilis were collected and concentrated in vacuo to dryness. The pale yellow powder thus obtained was chromatographed on a silica gel column packed with benzene. The column was washed successively with benzene and benzene-acetone (8:2) and then the active substance was eluted by benzene - acetone (6: 4). The combined enriched fraction was concentrated in vacuo to give moyukamycin free acid which was converted to the sodium salt by washing its ethyl acetate solution with 0.01 N NaOH. The solvent layer was concentrated

Fig. 1. Structure of moyukamycin sodium salt (I).

Fig. 2. Structure of dianemycin sodium salt (II).

and subjected to Sephadex LH-20 chromatography with EtOH to give a colorless powder of I, 99.6 mg, mp $129 \sim 133^{\circ}$ C.

Moyukamycin sodium salt (I) has the following physico-chemical properties; $[\alpha]_{D}^{26}$ +91.4° (c 0.5, CHCl₃); UV λ_{max}^{EtOH} 242 nm (E^{1%}_{1em} 146.9); IR $\nu_{max}^{CHCl_3}$ 3400 (OH), 1633 (C=C-C=O), and 1570 cm⁻¹ (-COO⁻). These characteristics are similar to those of the polyether antibiotics having an α,β -unsaturated ketone and two spiroketals such as dianemycin⁵ (A-130A⁶), A-130B⁷, A-130C⁷, leuseramycin (TM-531A)⁸), TM-531B (4'-O-demethyldianemycin)¹, TM-531C (3'-hydroxydianemycin)¹, X-14931A (19deoxyaglycone of dianemycin)⁶, and lenoremycin¹⁰.

The molecular formula of I was established to be $C_{47}H_{75}O_{13}Na$ by elemental analysis (Found C 65.04, H 8.54, Na 2.00, Calcd C 64.79, H 8.68, Na 2.64) and mass spectral data [FAB-MS m/z871 (M+H)⁺]. This formula is reminiscent of a dehydro derivative of leuseramycin. Unlike leuseramycin, however, the 400 MHz ¹H NMR spectrum of I suggested the presence of one -CHCH₂O- ($\delta_{\rm H}$ 3.79, dd and 4.22, dd), and two -CHCH=C(CH₃)- ($\delta_{\rm H}$ 5.96, d and 6.01, d; 1.85, s and 1.92, s).

The structure of I was determined by comparison of its ¹³C NMR spectral data with those of dianemycin sodium salt (II) (see Table 1) and by the use of the empirical rules for the polyether antibiotics¹¹⁾. The ¹³C NMR data were obtained by measurements of the completely decoupled, INEPT^{12,13)} and ¹³C-¹H shift correlation spectra¹⁴⁾.

The presence of an α , β -unsaturated carbonyl system in I as found in II was suggested by the similar chemical shifts of the ketone (C-5, δ_c 202.2), olefinic carbons (C-6, δ_c 133.8 and C-7, δ_c 144.9) and allylic methyl (C-38, δ_c 12.1). The other olefinic carbon signals at δ_c 136.2 and 147.5 also indicated that they are conjugated to a carbonyl carbon. Taking the UV absorption of I into consideration, this double bond must be connected to C-5. The ¹³C chemical shifts of the allylic methyls (C-38, δ_c 12.1 and C-39, δ_c 13.2) proved the *E* configurations for these two double bonds. The methine signal at δ_c 44.1 was

Table 1. ¹³C NMR chemical shifts (ppm) of sodium salts of moyukamycin (I) and dianemycin (II) at 100.6 MHz.

No.	Moyukamycin (I)	Dianemycin (II)	No.	Moyukamycin (I)	Dianemycin (II)
1	179.8	183.8	25	73.7	73.2
2	44.1	40.2	26	33.4	32.9
3	147.5	41.5 (CH)	27	37.0	36.5
4	136.2	37.5 (CH ₂)	28	40.0	35.9
5	202.2	206.2	29	97.9	98.5
6	133.8	133.6	30	28.7	65.3 (CH ₂ OH)
7	144.9	144.9	31	17.1	16.7
8	35.2	37.8	32	18.1	17.7
9	69.4	69.6	33	15.9	16.1
10	36.4	35.9	34	69.2	13.1 (CH ₃)
11	71.2	70.4	35	27.9	26.6
12	34.6	34.0	36	10.7	10.0
13	107.6	106.9	37	16.8	14.4
14	39.6	39.7	38	12.1	11.2
15	32.3	32.2	39	13.2	16.9
16	86.5	86.6	40	17.3	19.5
17	80.5	75.7	1'	102.5	101.9
18	20.1	25.4	2'	30.0	30.7
19	24.1	79.2 (CH-O-)	3'	27.7	27.7
20	35.6	34.6	4'	79.5	80.1
21	109.7	109.8	5'	75.6	74.6
22	36.1	35.9	6'	18.4	18.4
23	29.7	29.9	7'	57.3	56.8
24	79.4	77.9			

assigned to C-2 adjacent to the terminal carboxylic acid from the empirical rules. This methine was ascertained to be attached to a methyl ($\partial_{\rm H}$ 1.14, $\partial_{\rm C}$ 13.2) and an olefinic proton (H-3, $\partial_{\rm H}$ 6.01) by spin decoupling irradiating at $\partial_{\rm H}$ 3.44 (H-2). The configuration of C-2 was assumed to be identical with the related polyether antibiotics mentioned above due to the similarity between I and II.

The empirical rules indicated that I possesses the same ether rings as II does except for the C ring. As shown in Table 1, the ¹³C chemical shifts of C-9 to C-16 and C-21 to C-29 are in good agreement in both the compounds. In particular, the oxymethine (C-9, δ_c 69.4), ketal (C-13, δ_c 107.6), oxygenated quaternary (C-16, $\delta_{\rm c}$ 86.5) and methyl (C-35, $\delta_{\rm c}$ 27.9) signals in I indicated the structures of the A ring including C-8 and the B ring to be identical with those of II. Similarly, the characteristic signals for the D ring (C-21, δ_c 109.7 and C-24, δ_c 79.4), E ring except for C-30 carbon (C-29, δ_c 97.9: C-31, $\delta_{\rm C}$ 17.1: and C-32, $\delta_{\rm C}$ 18.1), and 4-Omethylamicetose moiety (C-1', δ_c 102.5: C-4', $\delta_{\rm c}$ 79.5: C-5', $\delta_{\rm c}$ 75.6: and C-7', $\delta_{\rm c}$ 57.3) in I suggested the structural identity of these moieties in I and II. The disappearance of the oxymethylene signal at δ_c 65.3 due to C-30 in II indicated the presence of a methyl group at C-30 $(\delta_c 28.7)$ in I. The remaining carbon resonances due to rings A, B, D and E in I were assigned by detailed comparison of ¹³C NMR spectral data of I and II (Table 1). The downfield shift of C-28 in I is explained in terms of the lack of γ -effect by the hydroxyl function on C-30.

The remaining carbons, i.e. two methylenes (δ_c 20.1 and 24.1) and one each of methine (δ_c 35.6), oxymethylene (δ_c 69.2) and oxymethine (δ_c 80.5), constitute the six-membered C ring moiety from C-17 to C-20. The decoupled difference ¹H NMR spectrum irradiating at $\delta_{\rm H}$ 3.79 (1H, dd, J=8.8 and 3.1 Hz, H-34a) and 4.22 (1H, dd, J=8.8 and 7.2 Hz, H-34b) indicated the connectivity of -CH2CHCH2O-, in which the methine was attached to a quaternary carbon (C-21) due to its splitting pattern at $\delta_{\rm H}$ 2.00 (dd, J=4.4 and 2.2 Hz). Consequently, the oxymethine assignable to C-17 was linked to the above partial structure via the only remaining methylene. The downfield shift of C-17 in I was reasonably attributed to the loss of the γ - effect by the substituent at C-19 of II. This substituent effect gave the assignment of C-18 and -19 methylenes δ_c 20.1 and 24.1, respectively. The orientation of the oxymethylene C-34 was determined to be axial (β -orientation) because of the coupling constant of H-20 (J=4.4 and 2.2 Hz) in the decoupled difference spectrum mentioned above.

The sugar moiety was combined to the oxymethylene at C-34 on the C ring, because the NOE experiment irradiating at H-1' ($\delta_{\rm H}$ 4.45) showed the enhancement of the signals at $\delta_{\rm H}$ 3.79 and 4.22 (H-34a and -34b) in addition to those at $\delta_{\rm H}$ 3.30 (H-5'). Thus, the structure of moyukamycin sodium salt has been established as shown in Fig. 1.

As far as we know, **I** is the first polyether antibiotic to possess a sugar at a branched hydroxymethyl group located in the middle position of polyketide chain.

Although the absolute structure of I remains to be clarified, it seems most reasonable to assume that I has the same configuration as II because of their similar optical rotation values.

Moyukamycin has activity against a wide range of Gram-positive bacteria, while no ac-

Table 2. Antimicrobial activity of moyukamycin sodium salt (I).

Test microorganism	MIC (μ g/ml)
Staphylococcus aureus FDA 209P	3.13
S. aureus Smith	6.25
(SA-, PC-, TC-, SM-, KM-, CP-	
and Mac-R)	
S. aureus TPR-23	6.25
(SA-, PC-, TC-, SM-, KM-, CP-	
and Mac-R)	
S. epidermidis TPR-25	6.25
B. subtilis ATCC 6633	3.13
Bacillus licheniformis	1.56
Micrococcus luteus NIHJ	3.13
Escherichia coli NIHJ C-2	>50
Pseudomonas aeruginosa P-32	>50
Aspergillus niger	>50
Tricophyton asteroides	>50
Candida albicans	>50
Saccharomyces cerevisiae	>50

Abbreviations: SA; sulfonamide, PC; benzylpenicillin, TC; tetracycline, SM; streptomycin, KM; kanamycin, CP; chloramphenicol, Mac; macrolide, R; resistant strain.

Medium: Heart-infusion agar.

Incubation: 24 hours at 37°C.

tivity was observed against Gram-negative bacteria as shown in Table 2. Its anticoccidial activity will be reported elsewhere.

> Hiroshi Nakayama Haruo Seto Noboru Ōtake

Institute of Applied Microbiology, The University of Tokyo Bunkyo-ku, Tokyo 113, Japan

> Michio Yamagishi Akira Kawashima Taku Mizutani Sadafumi Ōmura

Research Laboratories, Taisho Pharmaceutical Co., Ltd. 1-403, Yoshino-cho, Omiya-shi, Saitama 330, Japan

(Received May 15, 1985)

References

- For part XXVII see, MIZUTANI, T.; M. YAMA-GISHI, K. MIZOUE, A. KAWASHIMA, S. ŎMURA, M. ŎZEKI, H. SETO & N. ŎTAKE: Studies on the ionophorous antibiotics. XXVII. The structures of TM-531B (4'-O-demethyldianemycin) and TM-531C (3'-hydroxydianemycin), new polyether antibiotics containing sugars other than 4-O-methyl amicetose. J. Antibiotics 34: 1369~1373, 1981
- PROSSER, B. L. T. & N. J. PALLERONI: Taxonomy of the polyether antibiotic-producing organisms. *In* Polyether Antibiotics. Vol. 1. Biology. *Ed.*, J. W. WESTLEY, pp. 21~41, Marcel Dekker, Inc., New York and Basel, 1982
- RUFF, M. D.: Veterinary applications. In Polyether Antibiotics. Vol. 1. Biology. Ed., J. W. WESTLEY, pp. 303~332, Marcel Dekker, Inc., New York and Basel, 1982
- 4) TAYLOR, R. W.; R. F. KAUFFMAN & D. R. PFEIFFER: Cation complexation and transport by carboxylic acid ionophores. *In* Polyether Antibiotics. Vol. 1. Biology. *Ed.*, J. W. WESTLEY, pp. 103~184, Marcel Dekker, Inc., New York and Basel, 1982
- 5) CZERWINSKI, E. W. & L. K. STEINRAUF: Struc-

ture of the antibiotic dianemycin. Biochem. Biophys. Res. Commun. 45: 1284~1287, 1971

- KOYAMA, H. & K. UTSUMI-ODA: Crystal and molecular structure of a silver salt of antibiotic A-130A. J. Chem. Soc. Perkin II 1977: 1531~ 1536, 1977
- TSUJI, N.; Y. TERUI, K. NAGASHIMA, K. TORI & L. F. JOHONSON: New polyether antibiotics, A-130B and A-130C. J. Antibiotics 33: 94~ 97, 1980
- MIZUTANI, T.; M. YAMAGISHI, H. HARA, A. KAWASHIMA, S. ŌMURA, M. ŎZEKI, K. MIZOUE, H. SETO & N. ŌTAKE: Studies on the ionophorous antibiotics. XXIV. Leuseramycin, a new polyether antibiotic produced by *Streptomyces hygroscopicus*. J. Antibiotics 33: 137~ 143, 1980
- 9) WESTLEY, J. W.; C.-M. LIU, L. H. SELLO, N. TROUPE, J. F. BLOUNT, A.-M. CHIN, L. J. TODARO, P. A. MILLER & M. LIU: Isolation and characterization of antibiotic X-14931A, the naturally occurring 19-deoxyaglycone of dianemycin. J. Antibiotics 37: 813~815, 1984
- 10) BLOUNT, J. F.; R. H. EVANS, Jr., C.-M. LIU, T. HERMANN & J. W. WESTLEY: X-Ray structure of Ro 21-6150, a polyether antibiotic related to dianemycin. J. Chem. Soc. Chem. Commun. 1975: 853~855, 1975
- SETO, H.; K. MIZOUE, H. NAKAYAMA, K. FURI-HATA, N. ÕTAKE & H. YONEHARA: Studies on the ionophorous antibiotics. XX. Some empirical rules for structural elucidation of polyether antibiotics by ¹³C-NMR spectroscopy. J. Antibiotics 32: 239~243, 1979
- MORRIS, G. A. & R. FREEMAN: Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 101: 760~ 762, 1979
- DODDRELL, D. M. & D. T. PEGG: Assignment of proton-decoupled carbon-13 spectra of complex molecules by using polarization transfer spectroscopy. A superior method to off-resonance decoupling. J. Am. Chem. Soc. 102: 6388~6390, 1980
- 14) BAX, A.: Two-dimensional nuclear magnetic resonance in liquids. pp. 50~98, Delft University Press, Dordrecht, Boston and London, 1982